\
\\\\ “

Post Quatttemm Cryptography

w L

e

L s ¥
S g L

Q-DAY

Quantum Computer advancing fast

* Quantum chips

» Quantum computers: D-Wave: quantum annealing
computers

* PQC is new encryption algorithms designed to
resist attacks from quantum computers.

» Post Quantum Cryptography will eventually
replace classical cryptography used today

Q-day is the day someone builds a quantum computer
that can crack the most widely used forms of
encryption. Preparation date was set at 2035.

Q-Day is sooner than expected!

AV KEYSIGHT

Quantum Computing

Microsoft
Majorana 1

The path to a million qubits

O

QUANTUM CHIP

WILLOW

Standardization and regulatory developments

NIST recommendations

* ML-KEM (Kyber) for key agreement (FIPS-203)
« ML-DSA (Dilithium) for digital signatures (FIPS-204)
+ SLH-DSA (SPHINCS+) for digital signatures (FIPS-205)

« HQC algorithm was selected March 11, 2025 as a backup
KEM

Flacon to be published soon

ISO standards

« eXtended Merkle Signature Scheme (XMSS)- 2018
» Leighton-Micali hash-based Signature (LMS) - 2019
« TVLA

» Note: ISO published the stateful hash-based signatures —
2020

EUCC

« The PQC algorithms is now a guidance document for the
European certification scheme EUCC

Adoption

<
IEEE

ETSI/7____ N
N Z

World Class Standards

% Bundesamt cloud

4 fir Sicherheit in der

ANS’ Informationstechnik CSA securi f\
American National Standards Instifute 4! NCE

Public-key
B | CRYSTALS-Dilithium
CRYSTALS-Kyber
l. Symmetric-key
Advanced Encryption Standard (AES)
Secure Hash Algorithm (SHA)

T MITRE B

F

General Intelligence and
Security Service

Ministry of the Interior and
et Kingdom Relations

Xtended Merkle Signatu
Leighton-Micali Signatu

Regulatory requirements and

compliance is emerging

WHY SECURITY MATTERS DESPITE MIGRATION TO PQC?

Key risks for PQC implementations

* Quantum Computers are still in early development, but
PQC is already required now to protect against "Store now
Decrypt later" attacks.

* |n practice, as with tr.aditional Ciphers (AES, RSA, ECC, PQC implemented (
..) PQC implementations are proven to be vulnerable to p

solution
Side-Channel attacks and Fault Injection (FI) attacks!

Secure algorithm != Secure Implementation

Dilithium

Dilithium PQC algorithm
has 3 main stages:

* Key Generation:
* public key (pk)
* private key (sk)

* Signature of a message

e Verification of the
message

Gen

01 A+ R}

02 (s1,82) ¢ S x S}

03 t:= As; + s2

04 return (pk = (A,t),sk = (A, t,s1,82))

Sign(sk, M)

06 z:= 1

06 while z = 1 do

07y« S5y

08 wi = HighBits(Ay, 2v2)

09 c¢€ By :=H(M || wy)

10 zZ:=y+csy

11 if ||z]|ec = 71 — B or ||LowBits(Ay — cs2, 2v2)||ec = v2 — 8, then z := L
12 return o = (z, c)

Verify(pk, M,oc = (2, ¢))

13 wy := HighBits(Az — ct, 2v2)
14 if return [[||z]l.c <1 — 8] and [e = H (M || w’)]

Dilithium SIGNING

In this demonstration we aim to
corrupt the signature process and
then recover the secret key using
advanced mathematics.

e Signatures rely on a commitment
value y at line 10.

* Line 10 uses the private key s4

* Attacker needs to recover s;

Gen

01 A + R

02 (s1,82) < Sy x SF

03 t:= As1 +s2

04 return (pk = (A.,t),sk = (A,t,s81,82))

Sign(sk, M)

05 z:= L1

06 while z = 1 do

070y <+ Sy 1

08 w1 := HighBits(Ay, 2v2)

09 c€ B, :=H(M| wy)

100 Z:=y+ cs:

11 if |||l > 71 — B or ||LowBits(Ay — ¢s2,272)||ec = 72 — 3, then z := L
12 return o = (z, ¢)

Verify(pk, M,oc = (z, ¢))

13 w1y := HighBits(Az — ct, 2792)
14 if return [||z]|cc <71 — B] and [e = H (M || w})]

Fault Target

* Case 1: Gen

« Sampling of y vector is skipped — zero vector °* A Rgxg , .
02 (s, SQ) — S’?? X S??
02 t:= Asi1 + s2

* Z= (x5 04 return (pk = (A,t),sk = (A,t,s1,82))
* 54 can be trivially computed
1

e Line 10: becomes

* S1=Z *C

* Case 2:

£
- Some of the coefficients in polynomial is set, °7 ¥ < -1 ‘ . 2 cases
rest are 0 08 w1 = HighBits(Ay, 2v2)

09 c€ B :=H(M || wy)

* Polynomials are order of n' << n 10 Z:=y+cs

* s still can be recovered 11 if [|z][ac = 41 — B or [[LowBits(Ay — cs2,272)||sc > 72 — B, then z := L
12 return o = (z, ¢)

Verify(pk, M,oc = (z, c))

13 w} := HighBits(Az — ct, 2y2)
14 if return [||z|| <v1 — B] and [e = H (M || w})]

Math behind Loop-Abort Fault

* If order of polynomialy; € R; ,isn' <
n, then the problem can be reduced to
a lattice reduction problem

* Attacker knows z and challenge vector
C

 Sampling of y; was aborted early and
need to recover s

* The theory attack require knowledge of
n', butin our practical attack we can
guess n’ with high a probability by
observing coefficients of polynomials
inz

* No matter the security level

* No matter deterministic or non-
deterministic version

Loop-Abort Faults on Lattice-Based
Fiat-Shamir and Hash-and-Sign Signatures

Thomas Espitau?, Pierre-Alain Fougque®,
Benoit Gerard!, and Mehdi Tibouchi®

DA ML A TIEA
P NTT Secure Platform Laboratories |
' Institut Univessitaire de France & IHISA & Uni ité ode Renoes [°
! Ecole Normale Supéricure de Cachan & Sorbonne Universités, UPMC Univ Paris 6, L1IPG

Abstract. As the advent of general-purpose quantum computers appears to be drawing closer, agencies
anel acdvisory b r that we prepare the transition away fom fsctoring and
discrete logarithm-based cryptography, and towards postouamtom secure constructions, such as lattice
based scheames,

wee started recommencding

Almest all primitives of classical cryptography (amd more!) can be realmed with lattices, and the e
cieney of prmitives like encryption and signatures has gradually improved to the point that key =izes
are competitive with HSA imilar security levels, and fast performance can be achiew
ware and hardware Howes little research I:|.|-< been conducted on phy=ical attarcks t
implementations of postquantum crvptos

| bethi i sndd

wrgeding ooncretse
1 waexl schemes in g
such research is essential if lattices are going to replace REA and elliptic curves in our devices and smart
carcds.

neral and labtae warticular, anad

In this paper, we look in particular at fault ats
schemes. looking both at Fiat-Shamir type o larly BLISS, bot also GLE, PASSSing
and Ring-TESLA] and at hash-and-sign scher |'I'. the GIF'V-based scheme of Ducas—rest

Lyubashevsky). These schemes include essentially all practical Iattice-hased signatures, and achieve the
hest efficiency to date in both software and hardware. We present several fault attacks against those

acks against implementations of lattioe-based signatore

schemes yvielding a full key recovery with only a few or even a single faulty signature, and discuss possible
countermeasures to probect againest thess attacks

Keywords: Fault Attacks, Digital Signatures, Postquantum Cryptography, Lattices, BLISS, GI'Y.

1 Introduction

Lattice-hased cryptography. HRecent progress in quantum computation [11], the NSA advisory
memaorandum recommending the transition away from Suite B and to postguantum eryptography 1],
as well as the announeement of the NIST standardization process for postgquantum cryptography [4)
all suggest that research on postquantum schemes, which is already plentiful but mostly focused on
theoretical construetions and asymptotic security, should inereasingly take into account real world
implementation issues.

Among all postgquantum directions, lattice-hased ervptography accupies a position of particular
interest, as it relies on well-studied problems and comes with u:m'qm lv strong security guarantees,
such as worst-case to average-case reductions (13 A number of works have .L]'-l..l foensed on improving
the pc*lmm.mc e of lattice-based schemes, and actual implementation results suggest that properly
optimized schemes may be competitive with, or even outperform. classical factoring- and discrete
logarithm-based ervptography.

Lattice Reduction Approach

The mathematics used by our attack modules 1 - index of first faulted
: fficient
* Consider: coemetent
[— polynomialindexin
Z; = Y; +C* S1i vector
J —coefficientindexin
Z; * ¢l = Vi * ¢t + S1 polynomial
m—1
Zi * c~1 —S1i=Yi * cl = Z Yij* c~1 *xj
j=0

10

Target Function

* Each polynomial in vector y is
sampled in the loop solyvecl * uints t seed]], uint16 t nonce) {

 Sampled values are unpacked
into the polynomial structure

; HH1)

(& ->vec|[1], seed, L*nonce + 1);

Gen #define ((
01 A <+ R;GX[‘ (poly *a,

02 (81,82) « Sp x SF i
03 t:= As1 +s2

04 return (pk = (A,t),sk = (A,t,81,82))

uint8 t seed|
uintl6_t nonce)

I

L
Sign(sk, M) uint8 t buf|
05 z:=_1 stream256 state state;
06 while z =1 do

07y + 85 4

0g wy = HighBits(Ay, 272)
02 c€ By = H(M| wy) , _
0 Zi=y+oes (a, buf);
11 if ||2]|e = 41 — B or ||LowBits(Ay — ¢s2,272)|ec = v2 — 3, then z := L
12 return o = (z, c)

(&state, seed, nonce);
f'bLl‘F, B &StatE:}_‘,

Verify(pk, M,oc = (2, ¢))
13 wi := HighBits(Az — ct, 2v2)
12 if return [[|z]lo <1 — 8] and [c=H (M || w})]

11

Target Function

e Goal :

* Abort Loop as soon as possible in
polyz _unpack function

* No matter the medium:
* Voltage FI
* Electromagnetic Fl
* Laser Fl

()s

#if == (1 << 17)
for(i =0; 1 < Nf4; ++1) {
a[o*i+e];
uint32 t)a
uint32 t)a

r->coeffs[4%¥i+0
r->coeffs[4*i+0
r->coeffs[4*i+0
r->coeffs[4%1+0

r->coeffs[4%¥i+1
r->coeffs[4*i+1
r->coeffs[4¥i+1
r->coeffs[4¥%i+1

r->coeffs[4%i+2
r->coeffs[4*i+2
r->coeffs[4¥%i+2
r->coeffs[4¥%i+2

r->coeffs[4%i+3
r->coeffs[4*%i+3
r->coeffs[4¥%i+3
r->coeffs[4¥%i+3

r->coeffs[4*i+0
r->coeffs[4*i+1
r->coeffs[4¥%i+2
r->coeffs[4%i+3

I
I
&

OX3FFFF;

al9*%i+2

uintg t *a) {

>> 2;

uint32 t)a[9¥*i+3
uint32 t)a[9*i+4

OX3FFFF;

al9%ita

>> 4;

uint32 t)a[9*i+s5
uint32 t)a[9*it+e6

OX3FFFF;

al[9*it6

>> 6;

uint32 t)a[9*i+7
uint32 t)a[9¥*i+8

OX3FFFF;

r->coeffs[4*i+0];
r->coeffs[4*i+1];
r->coeffs[4%i+2];
r->coeffs[4%i+3];

12

Setup used

a|qe] zAX

Trigger
UART |

Etherne

et

Reset

- -
0 a0

asn

13

Setup used

‘-_\; -t .-’4

g

Differential Fault Attack on Dilithium (video)

14

https://youtu.be/i-5xGwEhXdU?si=hC01ZvVTugcf0Xth
https://youtu.be/i-5xGwEhXdU?si=hC01ZvVTugcf0Xth

Fault injection campaign

riscurc

Dashboard QFl Spotlight »_Console /Change parameters WiRestart | Bl Pause | .1sec Ssec Off

After obtaining a few successful
gl itc h es We a p p |y m at h t O i : - -:n ; z glitch_power i:t:h_delay -g::ch_length normal_voltage :qur_tumeuut :j;reset signa

recover the secret key o
* Green: Glitch attempts were ; ?
the target returned the s ?

expected response ?

False False

False False

* Yellow: The target mutes e ;

* Red: Successful glitches , | R

where the result of the target S
function has changed

15

Recovering private key

“#+ Inspector 2024.2-dev-3d5a%ec8-DRONE-2371 S

File Edit Calibration Perturbation Acquisition Compress Align Filter Analysis Crypto Samples Traces User Scripts Tools Window Help Profiles

w34 b u X 7 A)

¥ B Inspector (C\Users\T23\Inspector)
& [NO TRACE SETS FOUND]

Points of interest
Terplate analysis

SEED analysis

Calculator

First-order analysis
Known-key analysis
Known-key correlation
Deep Learning Analysis

ECC byte-multiply analysis
ECNR partial nonce analysis

Dilithium 51 Recover

Dilithium Forge Signature

16

Recovering private key

* We need to point to the
database containing the faulty
signatures

* We need to say were to place
the recovered private
signature

#- Dilithium Recover 51
Input Database C:\Users\T23\Desktop\fi_dilithium\Database\campaign.sglite Browse
Input Security Level |3

Qutput 51 |C:\Users\T23\Desktop\fi_dilithium\Databases 1-2.bin Browse

17

Forging a Signature

* Recovered s; can be used to sign arbitrary message
t = ASl + Sz
t1*2d + to :A81+SZ

A*Sl —t1*2d=t0)

* Attacker can generate arbitrary s,’ small polynomial and calculate new t,’

A*Sl _t1*2d+52’:t0’

« If t)—s, =Axs; —t; x2% secretkeyis successfully forged

A, t;,d - public knowledge
to, S, — private knowledge
s, —recovered

18

Forging a Message

The recover sighature
allows to forge new
msgs/payload.

i
Trace Parameters
2

TOyivou. WMIe Lt IV Lyees

Message

ii—‘t@ilithium Forge Signature

Input S1 [+ \sers\T23\Desktop\fi_diithium Database\s 1-2.bin

Input Public Key | C:\Users\T23\Desktop\f_diithium \Database \pubiic.key

Input Payload |c:v.m\'r23mmp\ﬁ_aﬁmpamu\paybadm

Output Signature |C:M\T?3Dedcmp\ﬁ_diﬂmbamne\fmoed-paﬂw -signature.bin

[V xIcllalla][?]

ar forging sgrature SUCCESSFUL

Saved generated signature to C:\Users\T23\Desktop\fi_dilithi

o]

Generating signature...
Signature:

Verifying signature...

<IN

Signature wverification successful!

e e pg—

ll‘ |lnhhl|:0 displayed:0

I

FFEFFFFFO0000000FFFFFFFFFEFFFFFFO0000000FDFFFFFFFCFFFFFF02000000FEFFFFFF0100000003000000FCFFFFFFFFFFFFFFO3000000FFFFFFFFFEFFFFFFFFFFFFFFO4000000FFFFFFFF02000000FFFFFFFF03000000020000000000000004000000020000000:

<l

19

Conclusions

e Secure algorithm!= secure implementation.

* Cryptographic implementations require thorough security testing to
avoid surprises.

* Dilithium is still a secure algorithm but needs to be implemented
properly with countermeasures.

20

KEYSIGHT

Thank you

Durga.lakshmi-ramachandran@keysight.com

mailto:Durga.lakshmi-ramachandran@keysight.com
mailto:Durga.lakshmi-ramachandran@keysight.com
mailto:Durga.lakshmi-ramachandran@keysight.com

	Slide 1: Post Quantum Cryptography
	Slide 2: Q-DAY
	Slide 3
	Slide 4
	Slide 5: FI on Dilithium
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

